
CSE P503:

Principles of

Software

Engineering

David Notkin

Autumn 2007

Requirements and Specifications … or

Man is the only animal whose desires increase as

they are fed; the only animal that is never satisfied.

--Henry George

The designer of a new kind of system must

participate fully in the implementation.

--Donald Knuth

I have yet to see any problem, however

complicated, which, when you looked at it in right

way, did not become still more complicated.

--Poul Anderson

UW CSE P503 David Notkin ● Autumn 2007 2

Some announcements and reminders

• If you are not receiving email from the class list, then
make sure to let Jonathan or me know so we can add
you – and messages are now being archived

• I will start to place more material on the wiki – again,
if you cannot access it, let Jonathan or me know

– In particular, I’ll try to place material that is likely to
be ―discussable‖ there, in an attempt to encourage
an exchange of viewpoints

• Format and citations for essay and papers: I don’t
really care, as long as it is reasonable – as a very
rough guide, you might consider articles in IEEE
Software and in CACM for this

UW CSE P503 David Notkin ● Autumn 2007 3

Our plan of attack: this week

• Analysis of state machine based specifications

(model checking)

• Michael Jackson on video: ―The World and the

Machine‖

UW CSE P503 David Notkin ● Autumn 2007 4

Interlude: but what should we do?

• A student writes (roughly):

– ―Software engineering seems very good at telling me what
not to do.

– “How *do* you do things, instead of what *doesn’t* work
properly.”

• Back at you: take two minutes with another student or two and
produce one or two imaginable ―actionable‖ principles that would
be of the form you’d like to have

– Example: ―The application of test-driven development has
been shown in some studies to reduce bug counts by an
order of magnitude over standard techniques where tests
are written after the fact.‖ [from a student in class]

– Your examples don’t have to be ―true‖ – just in a form that
captures what you’d like to see

UW CSE P503 David Notkin ● Autumn 2007 5

What is dependability

• Based on experience as part of a large NASA-funded
project on dependability, it became clear to me that

– Dependability is different things to different people

– There are two camps

• Use technology to improve dependability

• Build a ―culture of dependability‖

• Without a ―designation‖ of dependability, surely
efforts to increase dependability will be complicated
and perhaps compromised

• Surely it’s a combination of culture and of technology;
we’ll focus on one technology tonight

UW CSE P503 David Notkin ● Autumn 2007 6

Finite state machines

• There is a large class of specification languages
based on finite state machines

– A finite set of states

– A finite alphabet of symbols

– A start state and zero or more final states

– A transition relation

• Often used for describing the control aspects of
reactive systems (and much, much more!)

• The theoretical basis is very firm

• Many models including Petri nets, communicating
finite state machines, statecharts, RSML, …

UW CSE P503 David Notkin ● Autumn 2007 7

State machines: event-driven

• External events (actions in the external environment,

such as ―button pushed‖, ―door opened‖, ―nuclear

core above safe temperature‖, etc.)

• Internal events (actions defined in the internal system

to cause needed actions)

• Can generate external events that may drive

actuators in the environment (valves may be opened,

alarms may be rung, etc.)

• Transitions can have guards and conditions that

control whether or not they are taken

UW CSE P503 David Notkin ● Autumn 2007 8

Walkman example
(due to Alistair Kilgour, Heriot-Watt University)

UW CSE P503 David Notkin ● Autumn 2007 9

A common problem

• It is often the case that conventional finite state
machines blow-up in size for big problems, in two
senses

– The actual description of the machine can get very
large

– The state space represented by the machine can
get to be enormous

• This is especially true for

– deterministic machines (which are usually
desirable) and

– machines capturing concurrency (because of the
potential interleavings that must be captured)

UW CSE P503 David Notkin ● Autumn 2007 10

Statecharts (Harel)

• A visual formalism for defining finite state machines

• A hierarchical mechanism allows for complex

machines to be defined by smaller descriptions

– Parallel states (AND decomposition)

– Conventional OR decomposition

• Now part of UML

UW CSE P503 David Notkin ● Autumn 2007 12

Tools

• Statecharts have a set of supporting tools from i-

Logix (STATEMATE, Rhapsody)

– Editors

– Simulators

– Code generators

• C, Ada, Verilog, VHDL

– Some analysis support

• UML tools and environments…

UW CSE P503 David Notkin ● Autumn 2007 13

Classic examples

• Specifying a cruise control

• Specifying the traffic lights at an intersection

• Specifying trains on shared tracks

– Could be managing the bus tunnel in Seattle

• Etc.

UW CSE P503 David Notkin ● Autumn 2007 14

A snippet of cruise control

OnButtonPushed

OffButtonPushed

Cruise Pause

Resume

• Completely incomplete

• There should be guards and conditions on transitions

• Lots of other information left out

OnButtonPushed

OffButtonPushed

Cruise Pause

Resume

UW CSE P503 David Notkin ● Autumn 2007 15

More cruise control

• What if your state machine also tracked speed?

– Maybe the cruise control doesn’t work at low speeds

– Anyway, it needs to remember a speed so it can resume

properly

• What if it also interacted with the door locking system?

• You might have to modify almost every state to track not only

the state on the previous slide, but the speed, too

– Essentially, you need to build a cross product of all

combinations of states

• This is the kind of issue that can cause the machine to blowup in

size

– It’s not the best example, but it’s adequate

UW CSE P503 David Notkin ● Autumn 2007 16

Statecharts

• The idea of statecharts [Harel] is to provide a rich, visual

representation for defining finite state machines that capture the

essence of complex, reactive systems

• There isn’t a simple, easy-to-get, reference

– ―The‖ statecharts paper, but long and a bit hard to find

D. Harel, "Statecharts: A Visual Formalism for Complex

Systems, " Science of Computer Programming (1987)

– A general paper on statechart-like formalisms

D. Harel. "On Visual Formalisms," Comm. of the ACM (1988)

UW CSE P503 David Notkin ● Autumn 2007 17

Key idea: hierarchy

OnButtonPushed

OffButtonPushed

Cruise Pause

Resume

Exceed25MPH

…
LockButtonPushed

>25MPH

UW CSE P503 David Notkin ● Autumn 2007 18

Parallel AND-machines

• The state of the overall machine is represented by

one state from each of the parallel AND machines

– In a cruise control state AND in a speed state AND

in a door lock state

• Transitions can take place in all substates in parallel

– Events in one substate can cause transitions in

another substate

UW CSE P503 David Notkin ● Autumn 2007 19

A few statechart features

• Default entry states for each substate

– Indicated by an arrow with no initial state

• When any of the parallel machines is exited, the

entire machine is exited

• You can have ―history‖ states, which remember

where you were the last time you were in a machine

• The ―STATEMATE semantics‖ are the standard

semantics

– This is largely a question of which enabled

transitions are taken, and when

– At this level, you surely don’t care

UW CSE P503 David Notkin ● Autumn 2007 20

Leap of faith

• Statecharts (and variants) can be used to specify

important, complex systems

• (Not all software-based systems, nor all aspects of

many software-based systems)

UW CSE P503 David Notkin ● Autumn 2007 21

Question

• So we have a big statecharts-like specification

• How do we know it has properties we want it to have?

– Ex: is it deterministic?

– Ex: can you ever have the doors unlock by themselves while

the car is moving?

– Ex: can you ever cause an emergency descent when you

are under 500 feet above ground level?

• Three main approaches

– Human inspection

– Simulation

– Analysis: the most promising of these is model checking

UW CSE P503 David Notkin ● Autumn 2007 22

Model checking

• Evaluate temporal properties of

finite state systems

– Guarantee a property is true

or return a counterexample

– Ex: Is it true that we can

never enter an error state?

– Ex: Are we able to handle a

reset from any state?

• Extremely successfully for

hardware verification

– Intel got into the game after

the FDIV error

• Open question: applicable to

software specifications?

Finite State

Machine

Temporal Logic

Formula

Model

Checker

Yes No

UW CSE P503 David Notkin ● Autumn 2007 23

State Transition Graph

• One way to represent a finite state machine is as a

state transition graph

– S is a finite set of states

– R is a binary relation that defines the possible

transitions between states in S

– P is a function that assigns atomic propositions to

each state in S (e.g., that a specific process holds

a lock)

• Other representations include regular expressions,

etc.

UW CSE P503 David Notkin ● Autumn 2007 24

Example

• Three states

• Transitions as shown

• Atomic properties a, b and c

• Given a start state, you can

consider legal paths through

the state machine

a

b

b

c

a

c

S0

S1

S2

UW CSE P503 David Notkin ● Autumn 2007 25

A computation tree

• From a given start state, you

can represent all possible

paths with an infinite

computation tree

• Model checking allows us to

answer questions about this

tree structure

S0

S0

S1

S2S1

S0

S2S1

UW CSE P503 David Notkin ● Autumn 2007 26

Temporal formulae

• Temporal logics allow us to

say things like

– Does some property hold

true globally?

• Top figure

– Does some property

inevitably hold true?

• Bottom figure

– Does some property

potentially hold true?

S0

S0

S1

S2S1

S0

S2S1

S0

S0

S1

S2S1

S0

S2S1

S2

UW CSE P503 David Notkin ● Autumn 2007 27

Mutual exclusion example

• N1 & N2, non-critical regions

of Process 1 and 2

• T1 & T2, trying regions

• C1 and C2, critical regions

• AF(C1) in lightly shaded

state?

– C1 always inevitably

true?

• EF(C1  C2) in dark shaded

state?

– C1 and C2 eventually

true?

N1/N2

N1/T2T1/N2

C1/N2 T1/T2 T1/T2 N1/C2

T1/C2C1/T2

UW CSE P503 David Notkin ● Autumn 2007 28

How does model checking work?
(in brief!)

• An iterative algorithm that labels states in the

transition graph with formulae known to be true

• For a query Q

– the first iteration marks all subformulae of Q of

length 1

– the second iteration marks them of length 2

– this terminates since the formula is finite

• The details of the logic indeed matter

– But not at this level of description

UW CSE P503 David Notkin ● Autumn 2007 29

Example

• Q = T1  AF C1

– If Process 1 is trying to acquire the mutex, then it
is inevitably true it will get it sometime

• Q = T1 AF C1

– Rewriting with DeMorgan’s Laws

• First, label all the states where T1, T1, and C1 are
true

– These are atomic properties

UW CSE P503 David Notkin ● Autumn 2007 30

Example

• Next mark all the states in

which AF C1 is true, etc.

– The algorithm tracks

states visited using

depth-first search

– Slight variations for AF,

AG, EF, EG, etc.

• At termination,

T1  AF C1 is true

everywhere

– Hence the temporal

property is true for the

state machine

N1/N2
T1

T1 v AF C1

N1/T2
T1

T1 v AF C1

T1/N2
AF C1

T1 v AF C1

C1/N2
T1

AF C1

T1 v AF C1

N1/C2
T1

T1 v AF C1

T1/C2
AF C1

T1 v AF C1

T1/T2
AF C1

T1 v AF C1

C1/T2
T1

AF C1

T1 v AF C1

T1/T2
AF C1

T1 v AF C1

UW CSE P503 David Notkin ● Autumn 2007 31

Symbolic model checking

• State space can be huge (>21000) for many systems

• Key idea: use implicit representation of state space

– Data structure to represent transition relation as a

boolean formula

• Algorithmically manipulate the data structure to

explore the state space

• Key: efficiency of the data structure

UW CSE P503 David Notkin ● Autumn 2007 32

Binary decision diagrams (BDDs)

• ―Folded decision tree‖

• Fixed variable order

• Many functions have small

BDDs

– Multiplication is a notable

exception

• Can represent

– State machines

(transition functions) and

– Temporal queries

01

1 1

1 10

10

1 1

0

0

x
1

x
4

x
3

x
2

Odd ParityDue to Randy Bryant

UW CSE P503 David Notkin ● Autumn 2007 33

BDD-based model checking

• Iterative, fixed-point algorithms that are quite similar

to those in explicit model checking

• Applying boolean functions to BDDs is efficient,

which makes the underlying algorithms efficient

–  becomes set intersection (),  becomes set

union (), etc.

• When the BDDs remain small, that is

– Variable ordering is a key issue

UW CSE P503 David Notkin ● Autumn 2007 34

BDD-based successes in HW

• IEEE Futurebus+ cache coherence protocol

• Control protocol for Philips stereo components

• ISDN User Part Protocol

• But what about software?

– Software is often specified with infinite state
descriptions

– Software specifications may be structured
differently from hardware specifications

• Hierarchy

• Representations and algorithms for model
checking may not scale

UW CSE P503 David Notkin ● Autumn 2007 35

Our approach at UW—try it!

• Applied model checking to the specification of TCAS II

– Traffic Alert and Collision Avoidance System

• In use on U.S. commercial aircraft

– Issue resolution advisories only

• Vertical resolution only

• Relies on transponder data

• http://www.faa.gov/and/and600/and620/newtcas.htm

– FAA adopted specification

– Initial design and development by Leveson et al.

• Later applied it to a statecharts description of an electrical power

distribution system model of the B777

UW CSE P503 David Notkin ● Autumn 2007 36

Interlude: people make mistakes
Gerard Holzmann

• Average software tends to have about 1-10 residual

defects for every 1,000 lines of non-comment code

(defects found after testing)

• An average issue of New York Times has about

10,000 sentences + about 10 corrections to the

preceding issue → about 1 detected mistake per

1,000 (proofread) sentences

• What are the consequences of this on software

engineering?

UW CSE P503 David Notkin ● Autumn 2007 37

TCAS specification

• Irvine Safety Group (Leveson et al.)

– Specified in RSML as a research project

• RSML is in the Statecharts family of

hierarchical state machine description

languages

– FAA adopted RSML version as official

• Specification is about 400 pages long

• This study uses: Version 6.00, March 1993

– Not the current FAA version

UW CSE P503 David Notkin ● Autumn 2007 38

TCAS—high-level structure

Own_Aircraft Other_Aircraft

On

• Own_Aircraft

– Sensitivity levels, Alt_Layer, Advisory_Status

• Other_Aircraft

– Tracked, Intruder_State, Range_Test, Crossing, Sense

Descend/Climb

UW CSE P503 David Notkin ● Autumn 2007 39

Using SMV

• SMV is a BDD-based model checker

• It checks CTL formulas

– A specific temporal logic

TCAS

(RSML)

Properties

(CTL)

Model Checker

(SMV)

Partial TCAS

(SMV)

UW CSE P503 David Notkin ● Autumn 2007 40

Iterative process

• Iterate SMV version of specification

• Clarify and refine temporal formula

• Model environment more precisely

• Refine specification

UW CSE P503 David Notkin ● Autumn 2007 41

Use of non-determinism

• Inputs from environment

– Altitude := {1000…8000}

• Simplification of functions

– Alt_Rate :=

0.25*(Alt_Baro-ZP)/Delta_t

– Alt_Rate := {-2000…2000}

• Unmodelled parts of specification

– States of Other_Aircraft treated as non-

deterministic input variables

UW CSE P503 David Notkin ● Autumn 2007 42

Translating RSML to SMV

On

Off

MODULE main

VAR

state:{ON,OFF};

on_event: boolean;

off_event: boolean;

ASSIGN

init(state) := OFF;

next(state) := case

state = ON &

off_event: OFF;

state = OFF &

on_event: ON;

1 : state;

esac;

UW CSE P503 David Notkin ● Autumn 2007 43

State encoding

A B

D F

E G

S

C

T U

• Flatten nested AND and

nested OR states

• One variable for each OR

state

– An enumerated type of

the alternatives

• VAR

S: {A,B,C};

T: {D,E};

U: {F,G};

Notkin (c) 1997David Notkin ● Autumn

2007

44

Events

• External—interactions with environment

• Internal—micro steps

• Synchrony hypothesis

– External event arrives

– Triggers cascade of internal events (micro steps)

– Stability reached before next external event

• Technical issues with micro steps

UW CSE P503 David Notkin ● Autumn 2007 45

Non-deterministic transitions

• A machine is deterministic if at most one of T_A_B,

T_A_C, etc. can be true

– T_A_B represents the conditions under which a

transition is taken from state A to state B

– Else non-deterministic

UW CSE P503 David Notkin ● Autumn 2007 46

Checking properties

• Initial attempts to check any property generated

BDDs of over 200MB

• First successful check took 13 hours

– Was reduced to a few minutes

• Partitioned BDDs

• Reordered variables

• Implemented better search for counterexamples

UW CSE P503 David Notkin ● Autumn 2007 47

Property checking

• Domain independent properties

– Deterministic state transitions

– Function consistency

• Domain dependent

– Output agreement

– Safety properties

• We used SMV to investigate some of these
properties on TCAS’ Own_Aircraft module

UW CSE P503 David Notkin ● Autumn 2007 48

Deterministic transitions

• Do the same conditions allow for non-deterministic

transitions?

• Inconsistencies were found earlier by other methods

[Heimdahl and Leveson]

– Identical conditions allowed transitions from

Sensitivity Level 4 to SL 2 or to SL 5

• Our formulae checked for all possible non-

determinism; we found this case, too

V_254a := MS = TA_RA | MS = TA_only | MS =3 | MS = 4 |

MS = 5 | MS = 6 | MS = 7;

V_254b := ASL = 2 | ASL = 3 | ASL = 4 | ASL = 5 |

ASL = 6 | ASL = 7;

T_254 := (ASL = 2 & V_254a) | (ASL = 2 & MS = TA_only) |

(V_254b & LG = 2 & V524a);

V_257a := LG = 5 | LG = 6 | LG = 7 | LG = none;

V_257b := MS = TA_RA | MS = 5 || MS = 6 | MS = 7;

V_257c := MS = TA_RA | MS = TA_only | MS = 3 | MS = 4 |

MS = 5 | MS = 6 | MS = 7;

V_257d := ASL = 5 | ASL = 6 | ASL = 7;

T_257 := (ASL = 5 | V_257a | V_257b) |

(ASL = 5 & MS = TA_only) |

(ASL = 5& LG = 2 & V_257c) |

(V_257d & LG = 5 & V_257b) |

(V_257d & V_257a & MS = 5);

UW CSE P503 David Notkin ● Autumn 2007 50

Function consistency

• Many functions are defined

in terms of cases

• A function is inconsistent if

two different conditions Ci

and Cj and be true

simultaneously

AG !((C
1
 & C

2
) |

 (C
1
 & C

2
) |

 (C
2
 & C

3
))

 V
1
 if C

1

 V
2
 if C

2

 V
3
 if C

3

F =

UW CSE P503 David Notkin ● Autumn 2007 52

Display_Model_Goal

• Tells pilot desired rate of altitude change

• Checking for consistency gave a counterexample

– Other_Aircraft reverse from an Increase-

Climb to an Increase-Descend advisory

– After study, this is only permitted in our non-
deterministic modeling of Other_Aircraft

– Modeling a piece of Other_Aircraft’s logic

precludes this counterexample

UW CSE P503 David Notkin ● Autumn 2007 53

Output agreement

• Related outputs should be consistent

– Resolution advisory

•Increase-Climb, Climb, Descend,

Increase-Descend

– Display_Model_Goal

• Desired rate of altitude change

• Between -3000 ft/min and 3000 ft/min

– Presumably, on a climb advisory,
Display_Model_Goal should be positive

UW CSE P503 David Notkin ● Autumn 2007 54

Output agreement check

• AG (RA = Climb  DMG > 0)

– If Resolution Advisory is Climb, then

Display_Model_Goal is positive

• Counterexample was found

– t0 : RA = Descend, DMG = -1500

– t1 : RA = Increase-Descend,

DMG = -2500

– t2 : RA = Climb, DMG = -1500

UW CSE P503 David Notkin ● Autumn 2007 55

Limitations

• Can’t model all of TCAS

– Pushing limits of SMV (more than 200 bit variables

is problematic)

– Need some non-linear arithmetic to model parts of
Other_Aircraft

• New result that represents constraints as BDD

variables and uses a constraint solver

• How to pick appropriate formulae to check?

UW CSE P503 David Notkin ● Autumn 2007 56

Whence formulae?

• ―There have been two pilot reports received which

indicated that TCAS had issued Descend RA's at

approximately 500 feet AGL even though TCAS is

designed to inhibit Descent RAs at 1,000 feet AGL.

All available data from these encounters are being

reviewed to determine the reason for these RAs.‖

–TCAS web

UW CSE P503 David Notkin ● Autumn 2007 57

Whence formulae?

• Jaffe, Leveson et al. developed criteria that

specifications of embedded real-time systems should

satisfy, including:

– All information from sensors should be used

– Behavior before startup, after shutdown and

during off-line processing should be specified

– Every state must have a transition defined for

every possible input (including timeouts)

• Predicates on the transitions must yield

deterministic behavior

• Essentially a check-list, but a very useful one

UW CSE P503 David Notkin ● Autumn 2007 58

Model checking wrap up

• The goal of model checking is to allow finite state

descriptions to be analyzed and shown to have

particular desirable properties

– Won’t help when you don’t want or need finite

state descriptions

– Definitely added value when you do, but it’s not

turnkey yet

• There’s still a real art in managing model

checking

– Definitely feasible on modest sized systems

– More later on applications to code

UW CSE P503 David Notkin ● Autumn 2007 59

I know this was quick

• My goal isn’t to make you into model checking

experts

– But it might titillate one or two of you to learn more

• But rather to understand the sketches of what model

checking is and why it is so promising for checking

some classes of specifications

UW CSE P503 David Notkin ● Autumn 2007 60

Michael Jackson:

The World and the Machine

• Wikipedia lists the following well-known people named Michael Jackson

• Janet Jackson’s brother

• Record producer, known for some Kiss albums

• National Football League linebacker, 1979-1986

• Sacramento Kings player, 1987–1990

• English football (soccer) player

• National Football League wide receiver, 1991–1998

• Major League Baseball relief pitcher

• Beer Hunter show host, beer and whisky expert

• Radio talk show host, interviewer, KNX, Los Angeles

• British television executive

• Child actor who appeared in 1976 musical film Bugsy Malone

• U.S. Deputy Secretary, 2005

• Republican candidate in the 2003 California recall Gubernatorial election

• Bishop of Clogher, 2002–

• Professor of social anthropology and writer

• Developer of software development methods

• ―Action‖!

UW CSE P503 David Notkin ● Autumn 2007 61

Good night

• Let’s leave discussion to the wiki

