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Requirements and Specifications … or

Man is the only animal whose desires increase as 

they are fed; the only animal that is never satisfied. 

--Henry George

The designer of a new kind of system must 

participate fully in the implementation. 

--Donald Knuth

I have yet to see any problem, however 

complicated, which, when you looked at it in right 

way, did not become still more complicated. 

--Poul Anderson
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Some announcements and reminders

• If you are not receiving email from the class list, then 
make sure to let Jonathan or me know so we can add 
you – and messages are now being archived

• I will start to place more material on the wiki – again, 
if you cannot access it, let Jonathan or me know

– In particular, I’ll try to place material that is likely to 
be ―discussable‖ there, in an attempt to encourage 
an exchange of viewpoints

• Format and citations for essay and papers: I don’t 
really care, as long as it is reasonable – as a very 
rough guide, you might consider articles in IEEE 
Software and in CACM for this
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Our plan of attack: this week

• Analysis of state machine based specifications 

(model checking)

• Michael Jackson on video: ―The World and the 

Machine‖
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Interlude: but what should we do?

• A student writes (roughly): 

– ―Software engineering seems very good at telling me what 
not to do. 

– “How *do* you do things, instead of what *doesn’t* work 
properly.”

• Back at you: take two minutes with another student or two and 
produce one or two imaginable ―actionable‖ principles that would 
be of the form you’d like to have

– Example: ―The application of test-driven development has 
been shown in some studies to reduce bug counts by an 
_order of magnitude_ over standard techniques where tests 
are written after the fact.‖ [from a student in class]

– Your examples don’t have to be ―true‖ – just in a form that 
captures what you’d like to see
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What is dependability

• Based on experience as part of a large NASA-funded 
project on dependability, it became clear to me that

– Dependability is different things to different people

– There are two camps

• Use technology to improve dependability

• Build a ―culture of dependability‖

• Without a ―designation‖ of dependability, surely 
efforts to increase dependability will be complicated 
and perhaps compromised

• Surely it’s a combination of culture and of technology; 
we’ll focus on one technology tonight
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Finite state machines

• There is a large class of specification languages 
based on finite state machines

– A finite set of states

– A finite alphabet of symbols

– A start state and zero or more final states

– A transition relation

• Often used for describing the control aspects of 
reactive systems (and much, much more!)

• The theoretical basis is very firm

• Many models including Petri nets, communicating 
finite state machines, statecharts, RSML, …
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State machines: event-driven

• External events (actions in the external environment, 

such as ―button pushed‖, ―door opened‖, ―nuclear 

core above safe temperature‖, etc.)

• Internal events (actions defined in the internal system 

to cause needed actions)

• Can generate external events that may drive 

actuators in the environment (valves may be opened, 

alarms may be rung, etc.)

• Transitions can have guards and conditions that 

control whether or not they are taken
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Walkman example
(due to Alistair Kilgour, Heriot-Watt University) 
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A common problem

• It is often the case that conventional finite state 
machines blow-up in size for big problems, in two 
senses

– The actual description of the machine can get very 
large

– The state space represented by the machine can 
get to be enormous

• This is especially true for

– deterministic machines (which are usually 
desirable) and

– machines capturing concurrency (because of the 
potential interleavings that must be captured)
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Statecharts (Harel)

• A visual formalism for defining finite state machines

• A hierarchical mechanism allows for complex 

machines to be defined by smaller descriptions

– Parallel states (AND decomposition)

– Conventional OR decomposition

• Now part of UML
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Tools

• Statecharts have a set of supporting tools from i-

Logix (STATEMATE, Rhapsody)

– Editors

– Simulators

– Code generators

• C, Ada, Verilog, VHDL

– Some analysis support

• UML tools and environments…
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Classic examples

• Specifying a cruise control

• Specifying the traffic lights at an intersection

• Specifying trains on shared tracks

– Could be managing the bus tunnel in Seattle

• Etc.
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A snippet of cruise control

OnButtonPushed

OffButtonPushed

Cruise Pause

Resume

• Completely incomplete

• There should be guards and conditions on transitions

• Lots of other information left out

OnButtonPushed

OffButtonPushed

Cruise Pause

Resume
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More cruise control

• What if your state machine also tracked speed?

– Maybe the cruise control doesn’t work at low speeds

– Anyway, it needs to remember a speed so it can resume 

properly

• What if it also interacted with the door locking system?

• You might have to modify almost every state to track not only 

the state on the previous slide, but the speed, too

– Essentially, you need to build a cross product of all 

combinations of states

• This is the kind of issue that can cause the machine to blowup in 

size

– It’s not the best example, but it’s adequate
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Statecharts

• The idea of statecharts [Harel] is to provide a rich, visual 

representation for defining finite state machines that capture the 

essence of complex, reactive systems

• There isn’t a simple, easy-to-get, reference

– ―The‖ statecharts paper, but long and a bit hard to find

D. Harel, "Statecharts: A Visual Formalism for Complex 

Systems, " Science of Computer Programming (1987)

– A general paper on statechart-like formalisms

D. Harel. "On Visual Formalisms," Comm. of the ACM (1988)
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Key idea: hierarchy

OnButtonPushed

OffButtonPushed

Cruise Pause

Resume

Exceed25MPH

…
LockButtonPushed

>25MPH
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Parallel AND-machines

• The state of the overall machine is represented by 

one state from each of the parallel AND machines

– In a cruise control state AND in a speed state AND 

in a door lock state

• Transitions can take place in all substates in parallel

– Events in one substate can cause transitions in 

another substate
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A few statechart features

• Default entry states for each substate

– Indicated by an arrow with no initial state

• When any of the parallel machines is exited, the 

entire machine is exited

• You can have ―history‖ states, which remember 

where you were the last time you were in a machine

• The ―STATEMATE semantics‖ are the standard 

semantics

– This is largely a question of which enabled 

transitions are taken, and when

– At this level, you surely don’t care
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Leap of faith

• Statecharts (and variants) can be used to specify 

important, complex systems

• (Not all software-based systems, nor all aspects of 

many software-based systems)
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Question

• So we have a big statecharts-like specification

• How do we know it has properties we want it to have?

– Ex: is it deterministic?

– Ex: can you ever have the doors unlock by themselves while 

the car is moving?

– Ex: can you ever cause an emergency descent when you 

are under 500 feet above ground level?

• Three main approaches

– Human inspection

– Simulation

– Analysis: the most promising of these is model checking



UW CSE P503 David Notkin ● Autumn 2007 22

Model checking

• Evaluate temporal properties of 

finite state systems

– Guarantee a property is true 

or return a counterexample

– Ex: Is it true that we can 

never enter an error state?

– Ex: Are we able to handle a 

reset from any state?

• Extremely successfully for 

hardware verification

– Intel got into the game after 

the FDIV error

• Open question: applicable to 

software specifications? 

Finite State

Machine

Temporal Logic

Formula

Model

Checker

Yes No
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State Transition Graph

• One way to represent a finite state machine is as a 

state transition graph

– S is a finite set of states

– R is a binary relation that defines the possible 

transitions between states in S

– P is a function that assigns atomic propositions to 

each state in S (e.g., that a specific process holds 

a lock)

• Other representations include regular expressions, 

etc.
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Example

• Three states

• Transitions as shown

• Atomic properties a, b and c

• Given a start state, you can 

consider legal paths through 

the state machine

a

b

b

c

a

c

S0

S1

S2
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A computation tree

• From a given start state, you 

can represent all possible 

paths with an infinite 

computation tree

• Model checking allows us to 

answer questions about this 

tree structure

S0

S0

S1

S2S1

S0

S2S1
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Temporal formulae

• Temporal logics allow us to 

say things like

– Does some property hold 

true globally?

• Top figure

– Does some property 

inevitably hold true?

• Bottom figure

– Does some property 

potentially hold true?

S0

S0

S1

S2S1

S0

S2S1

S0

S0

S1

S2S1

S0

S2S1

S2
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Mutual exclusion example

• N1 & N2, non-critical regions 

of Process 1 and 2

• T1 & T2, trying regions 

• C1 and C2, critical regions

• AF(C1) in lightly shaded 

state?

– C1 always inevitably 

true?

• EF(C1  C2) in dark shaded 

state?

– C1 and C2 eventually 

true?

N1/N2

N1/T2T1/N2

C1/N2 T1/T2 T1/T2 N1/C2

T1/C2C1/T2
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How does model checking work?
(in brief!)

• An iterative algorithm that labels states in the 

transition graph with formulae known to be true

• For a query Q

– the first iteration marks all subformulae of Q of 

length 1

– the second iteration marks them of length 2

– this terminates since the formula is finite

• The details of the logic indeed matter

– But not at this level of description
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Example

• Q = T1  AF C1

– If Process 1 is trying to acquire the mutex, then it 
is inevitably true it will get it sometime

• Q = T1 AF C1

– Rewriting with DeMorgan’s Laws

• First, label all the states where T1, T1, and C1 are 
true

– These are atomic properties
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Example

• Next mark all the states in 

which AF C1 is true, etc.

– The algorithm tracks 

states visited using 

depth-first search

– Slight variations for AF, 

AG, EF, EG, etc.

• At termination, 

T1  AF C1 is true 

everywhere

– Hence the temporal 

property is true for the 

state machine

N1/N2
T1

T1 v AF C1

N1/T2
T1

T1 v AF C1

T1/N2
AF C1

T1 v AF C1

C1/N2
T1

AF C1

T1 v AF C1

N1/C2
T1

T1 v AF C1

T1/C2
AF C1

T1 v AF C1

T1/T2
AF C1

T1 v AF C1

C1/T2
T1

AF C1

T1 v AF C1

T1/T2
AF C1

T1 v AF C1
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Symbolic model checking

• State space can be huge (>21000) for many systems

• Key idea: use implicit representation of state space

– Data structure to represent transition relation as a 

boolean formula

• Algorithmically manipulate the data structure to 

explore the state space

• Key: efficiency of the data structure
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Binary decision diagrams (BDDs)

• ―Folded decision tree‖

• Fixed variable order

• Many functions have small 

BDDs

– Multiplication is a notable 

exception

• Can represent

– State machines 

(transition functions) and

– Temporal queries

01

1 1

1 10

10

1 1

0

0

x
1

x
4

x
3

x
2

Odd ParityDue to Randy Bryant
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BDD-based model checking

• Iterative, fixed-point algorithms that are quite similar 

to those in explicit model checking

• Applying boolean functions to BDDs is efficient, 

which makes the underlying algorithms efficient

–  becomes set intersection (),  becomes set 

union (), etc.

• When the BDDs remain small, that is

– Variable ordering is a key issue
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BDD-based successes in HW

• IEEE Futurebus+ cache coherence protocol

• Control protocol for Philips stereo components

• ISDN User Part Protocol

• But what about software?

– Software is often specified with infinite state 
descriptions

– Software specifications may be structured 
differently from hardware specifications

• Hierarchy

• Representations and algorithms for model 
checking may not scale
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Our approach at UW—try it!

• Applied model checking to the specification of TCAS II

– Traffic Alert and Collision Avoidance System

• In use on U.S. commercial aircraft

– Issue resolution advisories only

• Vertical resolution only

• Relies on transponder data

• http://www.faa.gov/and/and600/and620/newtcas.htm

– FAA adopted specification

– Initial design and development by Leveson et al.

• Later applied it to a statecharts description of an electrical power 

distribution system model of the B777
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Interlude: people make mistakes
Gerard Holzmann

• Average software tends to have about 1-10 residual 

defects for every 1,000 lines of non-comment code 

(defects found after testing)

• An average issue of New York Times has about 

10,000 sentences + about 10 corrections to the 

preceding issue → about 1 detected mistake per 

1,000 (proofread) sentences

• What are the consequences of this on software 

engineering?
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TCAS specification

• Irvine Safety Group (Leveson et al.)

– Specified in RSML as a research project

• RSML is in the Statecharts family of 

hierarchical state machine description 

languages

– FAA adopted RSML version as official

• Specification is about 400 pages long

• This study uses: Version 6.00, March 1993

– Not the current FAA version
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TCAS—high-level structure

Own_Aircraft Other_Aircraft

On

• Own_Aircraft

– Sensitivity levels, Alt_Layer, Advisory_Status

• Other_Aircraft

– Tracked, Intruder_State, Range_Test, Crossing, Sense 

Descend/Climb
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Using SMV

• SMV is a BDD-based model checker

• It checks CTL formulas

– A specific temporal logic

TCAS

(RSML)

Properties

(CTL)

Model Checker

(SMV)

Partial TCAS

(SMV)
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Iterative process

• Iterate SMV version of specification

• Clarify and refine temporal formula

• Model environment more precisely

• Refine specification
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Use of non-determinism

• Inputs from environment

– Altitude := {1000…8000}

• Simplification of functions

– Alt_Rate :=

0.25*(Alt_Baro-ZP)/Delta_t

– Alt_Rate := {-2000…2000}

• Unmodelled parts of specification

– States of Other_Aircraft treated as non-

deterministic input variables
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Translating RSML to SMV

On

Off

MODULE main

VAR

state:{ON,OFF};

on_event: boolean;

off_event: boolean;

ASSIGN

init(state) := OFF;

next(state) := case

state = ON &

off_event: OFF;

state = OFF &

on_event: ON;

1 : state;

esac;
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State encoding

A B

D F

E G

S

C

T U

• Flatten nested AND and 

nested OR states

• One variable for each OR 

state

– An enumerated type of 

the alternatives

• VAR

S: {A,B,C};

T: {D,E};

U: {F,G};
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Events

• External—interactions with environment

• Internal—micro steps

• Synchrony hypothesis

– External event arrives

– Triggers cascade of internal events (micro steps)

– Stability reached before next external event

• Technical issues with micro steps
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Non-deterministic transitions

• A machine is deterministic if at most one of T_A_B, 

T_A_C, etc. can be true

– T_A_B represents the conditions under which a 

transition is taken from state A to state B

– Else non-deterministic
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Checking properties

• Initial attempts to check any property generated 

BDDs of over 200MB

• First successful check took 13 hours

– Was reduced to a few minutes

• Partitioned BDDs

• Reordered variables

• Implemented better search for counterexamples
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Property checking

• Domain independent properties

– Deterministic state transitions

– Function consistency

• Domain dependent

– Output agreement

– Safety properties

• We used SMV to investigate some of these 
properties on TCAS’ Own_Aircraft module
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Deterministic transitions

• Do the same conditions allow for non-deterministic 

transitions?

• Inconsistencies were found earlier by other methods 

[Heimdahl and Leveson]

– Identical conditions allowed transitions from 

Sensitivity Level 4 to SL 2 or to SL 5

• Our formulae checked for all possible non-

determinism; we found this case, too



V_254a := MS = TA_RA | MS = TA_only | MS =3 | MS = 4 |

MS = 5 | MS = 6 | MS = 7;

V_254b := ASL = 2 | ASL = 3 | ASL = 4 | ASL = 5 |

ASL = 6 | ASL = 7;

T_254  := (ASL = 2 & V_254a) | (ASL = 2 & MS = TA_only) |

(V_254b & LG = 2 & V524a);

V_257a := LG = 5 | LG = 6 | LG = 7 | LG = none;

V_257b := MS = TA_RA | MS = 5 || MS = 6 | MS = 7;

V_257c := MS = TA_RA | MS = TA_only | MS = 3 | MS = 4 |

MS = 5 | MS = 6 | MS = 7;

V_257d := ASL = 5 | ASL = 6 | ASL = 7;

T_257  := (ASL = 5 | V_257a | V_257b) |

(ASL = 5 & MS = TA_only) |

(ASL = 5& LG = 2 & V_257c) |

(V_257d & LG = 5 & V_257b) |

(V_257d & V_257a & MS = 5);



UW CSE P503 David Notkin ● Autumn 2007 50

Function consistency

• Many functions are defined 

in terms of cases

• A function is inconsistent if 

two different conditions Ci

and Cj and be true 

simultaneously

AG !((C
1
 & C

2
) |

     (C
1
 & C

2
) |

     (C
2
 & C

3
))

 V
1
 if C

1

 V
2
 if C

2

 V
3
 if C

3

F =
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Display_Model_Goal

• Tells pilot desired rate of altitude change

• Checking for consistency gave a counterexample

– Other_Aircraft reverse from an Increase-

Climb to an Increase-Descend advisory

– After study, this is only permitted in our non-
deterministic modeling of Other_Aircraft

– Modeling a piece of Other_Aircraft’s logic 

precludes this counterexample
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Output agreement

• Related outputs should be consistent

– Resolution advisory

•Increase-Climb, Climb, Descend, 

Increase-Descend

– Display_Model_Goal

• Desired rate of altitude change

• Between -3000 ft/min and 3000 ft/min

– Presumably, on a climb advisory, 
Display_Model_Goal should be positive
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Output agreement check

• AG (RA = Climb  DMG > 0)

– If Resolution Advisory is Climb, then 

Display_Model_Goal is positive

• Counterexample was found

– t0 : RA = Descend, DMG = -1500

– t1 : RA = Increase-Descend,

DMG = -2500

– t2 : RA = Climb, DMG = -1500
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Limitations

• Can’t model all of TCAS

– Pushing limits of SMV (more than 200 bit variables 

is problematic)

– Need some non-linear arithmetic to model parts of 
Other_Aircraft

• New result that represents constraints as BDD 

variables and uses a constraint solver

• How to pick appropriate formulae to check?
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Whence formulae?

• ―There have been two pilot reports received which 

indicated that TCAS had issued Descend RA's at 

approximately 500 feet AGL even though TCAS is 

designed to inhibit Descent RAs at 1,000 feet AGL. 

All available data from these encounters are being 

reviewed to determine the reason for these RAs.‖

–TCAS web
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Whence formulae?

• Jaffe, Leveson et al. developed criteria that 

specifications of embedded real-time systems should 

satisfy, including:

– All information from sensors should be used

– Behavior before startup, after shutdown and 

during off-line processing should be specified

– Every state must have a transition defined for 

every possible input (including timeouts)

• Predicates on the transitions must yield 

deterministic behavior

• Essentially a check-list, but a very useful one
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Model checking wrap up

• The goal of model checking is to allow finite state 

descriptions to be analyzed and shown to have 

particular desirable properties

– Won’t help when you don’t want or need finite 

state descriptions

– Definitely added value when you do, but it’s not 

turnkey yet

• There’s still a real art in managing model 

checking

– Definitely feasible on modest sized systems

– More later on applications to code
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I know this was quick

• My goal isn’t to make you into model checking 

experts

– But it might titillate one or two of you to learn more

• But rather to understand the sketches of what model 

checking is and why it is so promising for checking 

some classes of specifications
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Michael Jackson:

The World and the Machine

• Wikipedia lists the following well-known people named Michael Jackson 

• Janet Jackson’s brother

• Record producer, known for some Kiss albums

• National Football League linebacker, 1979-1986 

• Sacramento Kings player, 1987–1990 

• English football (soccer) player

• National Football League wide receiver, 1991–1998 

• Major League Baseball relief pitcher 

• Beer Hunter show host, beer and whisky expert 

• Radio talk show host, interviewer, KNX, Los Angeles 

• British television executive 

• Child actor who appeared in 1976 musical film Bugsy Malone 

• U.S. Deputy Secretary, 2005 

• Republican candidate in the 2003 California recall Gubernatorial election 

• Bishop of Clogher, 2002–

• Professor of social anthropology and writer 

• Developer of software development methods 

• ―Action‖!
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Good night

• Let’s leave discussion to the wiki


